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Abstract

Analytical expressions are derived for computation of critical velocity of a fluid flowing in a pipeline and resting on a

two-parameter foundation like the Pasternak foundation. Fourier series and Galerkin methods have been utilized in

computing the results for three simple boundary conditions, namely: pinned–pinned, pinned–clamped and clamped–

clamped. Results are presented for varying values of both the foundation stiffness parameters and comparison is made

with available literature for the case of the second parameter equal to zero, and new results are presented for varying values

of the second foundation parameter. Interesting conclusions are drawn on the effect of the foundation parameters on the

critical flow velocity of the pipeline.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The technology of transporting fluids, especially petroleum liquids, through long pipelines, which cover
different types of terrain, has evolved over the years. The velocity of the fluid in a pipeline transporting fluids
imparts energy to the pipeline making it to vibrate. It is well established from published literature that there
exists a critical velocity of the fluid near which the natural frequency of the pipeline tends to zero. This is the
required condition for buckling of the pipeline. Literature abounds with analyses, which give information on
the influence of boundary conditions on the stability of fluid conveying pipes. Interest in studying the dynamic
behaviour of such fluid conveying pipes was stimulated when excessive transverse vibrations were observed
and subsequently analysed first by Ashley and Haviland in 1950 [1] and later by Housner in 1952 [2]. Housner
considered a simply supported beam model for the pipeline and analysed it using a series solution approach
and showed the existence of a critical flow velocity for a pipeline, which could cause buckling. In 1955, Long
[3] studied the influence of clamped–clamped and clamped–pinned boundary conditions on the critical
velocity. In 1966, Gregory and Paidoussis [4] presented results on the dynamic behaviour of a cantilevered pipe
conveying fluid. All the above studies did not consider elastic support conditions.
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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Nomenclature

Ar mass of pipe/unit length
Cij integration constants
E modulus of elasticity
I moment of inertia
k1 winkler foundation stiffness/unit length
k2 shear foundation constant/unit length
L length of the pipe
m mass of pipe/unit length
M total mass of pipe plus fluid/unit length
v steady flow velocity of fluid
V non-dimensional flow velocity parameter
Vcr critical velocity parameter
w lateral displacement of the pipe
x dimension along the length of pipe

Greek symbols

b non-dimensional mass-ratio parameter
g1 non-dimensional Winkler foundation

parameter
g2 non-dimensional shear foundation para-

meter
lr beam frequency parameter
cr beam eigenfunctions
sr frequency function
oj jth mode of vibration
O non-dimensional frequency parameter
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When a pipeline rests on an elastic medium such as a soil, a model of the soil medium must be included in
the governing differential equation. A very common structural model of the soil medium is the Winkler model,
in which soil is represented by a series of constant stiffness, closely spaced linear springs. This model is
extensively used in engineering analysis because of its simplicity and also because it is possible to obtain
closed-form solutions for uniform stiffness. In 1970, Stein and Tobriner [5] studied the vibrations of a fluid-
conveying pipe resting on an elastic foundation. Lottati and Kornecki, in 1986 [6], studied the influence of the
elastic foundation on the stability of the pipeline. Later, in 1992, Dermendjian-Ivanova [7] investigated the
behaviour of a fluid conveying pipe resting on an elastic foundation and obtained the critical fluid velocity. In
1993, Raghava Chary et al. [8] presented a detailed analysis of fluid conveying pipes resting on elastic
foundation. In a recent paper, Doaré and de Langre [9] studied instability of fluid conveying pipes on Winkler-
type foundation. The focus in their paper was on instability of infinitely long fluid conveying pipes using wave
propagation approach, wherein results are interpreted in terms static neutrality as criteria for pinned–pinned,
clamped–clamped ends and dynamic neutrality for clamped–free ends. All these studies modelled the elastic
foundation as a Winkler model.

A real soil medium, however is more complex in its elastic behaviour than what the above model
considers. The Winkler model assumes that the deformation of the foundation is only in the loaded
region and hence implies a deformation discontinuity between the loaded and unloaded parts. Also, this
model is inadequate when a lift-off takes place between the soil and the structure. To address such
deficiencies, many researchers suggested an interaction between the springs of the Winkler model to
obtain a more realistic model of the soil. Hence, two-parameter foundation models were developed,
of which, the Pasternak model is considered closer to the soil behaviour than other models—for example,
see Dutta and Roy [10]. In the Pasternak model, an incompressible shear layer is introduced between
the Winkler springs and the pipe surface. The springs are connected to this shear layer, which is
capable of resisting only transverse shear, thus allowing for ‘‘shear interaction’’ between the Winkler
springs. Pipelines, especially those carrying petroleum products, traverse varied terrains like sand, gravel,
mud and rock. The Pasternak model is considered to be closer to these real media. Analysis of fluid
conveying pipes has been extensively performed for the case of one-parameter elastic foundation
models like the Winkler model, and there is a good amount of literature on the behaviour of beams
on two-parameter foundations. However, to the best of authors’ knowledge, no study has been published
dealing with the behaviour of fluid-conveying pipes resting on a two-parameter elastic foundation.
It is therefore felt necessary to study the dynamics and stability of fluid conveying pipes resting on
two-parameter foundation such as Pasternak foundation for pinned–pinned, clamped–clamped and
clamped–pinned ends.
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In this paper, the work of previous authors [5–8] has been extended suitably to include the influence of a
two-parameter foundation model on the vibration and stability characteristics of the fluid conveying pipes.
Results are presented showing the variation for various values of the foundation stiffness parameters.

2. Equation of motion

The differential equation of motion for lateral displacement w(x, t) of a uniform fluid-conveying pipe resting
on a Winkler-type elastic foundation is given by

EI
q4w

qx4
þM

q2w
qt2
þ rAv2

q2w
qx2
þ 2rAv

q2w

qxqt
þ k1w ¼ 0. (1)

The symbols in the above equation are defined in the nomenclature. In this equation, the elastic medium is
modelled on the Winkler-type foundation. The equation of motion for a fluid-conveying pipe resting on a two-
parameter foundation becomes:

EI
q4w

qx4
þM

q2w
qt2
þ ðrAv2 � k2Þ

q2w
qx2
þ 2rAv

q2w
qxqt
þ k1w ¼ 0. (2)

In Eq. (2) above, k2 represents the additional parameter defining the foundation, usually termed as the shear
constant of the foundation. The model is shown in Fig. 1. Eq. (2) is now solved for three simple boundary
conditions.

2.1. Pinned– pinned pipe

The boundary conditions for a pinned–pinned pipe are

wð0; tÞ ¼ wðL; tÞ ¼ 0,

q2wð0; tÞ
qx2

¼
q2wðL; tÞ

qx2
¼ 0. ð3Þ

Taking the solution of Eq. (2) which satisfies the boundary conditions Eq. (3) as

wðx; tÞ ¼
X

n¼1;3;5;...

an sin
npx

L
sin oj tþ

X
n¼2;4;6;...

an sin
npx

L
cos oj t; j ¼ 1; 2; 3; . . . , (4)

where oj represents the natural frequency of the jth mode of vibration. Substitution of Eq. (4) into Eq. (2) and
expanding in a Fourier series we have an equation of the form:

K� o2
j MI

h i
fag ¼ 0, (5)
Fig. 1. Model of a fluid-conveying pipe resting on a two-parameter foundation.
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where K is the stiffness matrix whose elements are enumerated in Ref. [8] and will not be repeated here, I is the
identity matrix and aT ¼ fa1; a2; . . . ; ang. Retaining the first two terms of the above equation, and setting the
determinant equal to zero, we get

O4
j �

256

9
b� 5p2

� �
ðV 2 � g2Þ þ 17p4 þ 2g1

� �
O2

j

þ 4p4ðV 2 � g2Þ
2
� ðV 2 � g2Þ ð5p

2g1 þ 20p6Þ þ ð16p8 þ 17p4g1 þ g21Þ
� �

¼ 0. ð6Þ

In Eq. (6), the following non-dimensional parameters have been used:

b ¼
rA

M
; Oj ¼ ojL

2

ffiffiffiffiffiffi
M

EI

r
; j ¼ 1; 2; 3; . . . ; V ¼ vL

ffiffiffiffiffiffiffi
rA

EI

r
; g1 ¼

k1L
4

EI
; g2 ¼

k2L
2

EI
.

When the fluid velocity reaches a certain value Vcr, the fundamental natural frequency becomes zero. Hence,
setting Oj ¼ 0 in Eq. (6), we obtain

4p4ðV 2 � g2Þ
2
� ðV2 � g2Þ ð5p

2g1 þ 20p6Þ þ ð16p8 þ 17p4g1 þ g21Þ
� �

¼ 0. (7)

Solving Eq. (7) for V, we obtain the critical flow velocity for the pinned–pinned case. Doaré and de Langre
[9], have used Eq. (8) below, for computing the critical velocity, considering only the Winkler foundation. This
equation is based on the relations for a column under compressive load [11]

V cr ¼ Np 1þ
g1
ðNpÞ4

� �1=2

, (8)

where N is the smallest integer satisfying N2ðN þ 1Þ2Xg1=p
4.
2.2. Pinned– clamped and clamped– clamped pipe

The boundary conditions for a pinned–clamped pipe are

wð0; tÞ ¼ wðL; tÞ ¼ 0,

qwð0; tÞ

qx
¼

q2wðL; tÞ
qx2

¼ 0. ð9Þ

And those for a clamped–clamped pipe are

wð0; tÞ ¼ wðL; tÞ ¼ 0;

qwð0; tÞ

qx
¼

qwðL; tÞ

qx
¼ 0:

(10)

We assume the deflection of the pipe to be of the form

wðx; tÞ ¼ < fn

x

L

	 

eiot

h i
. (11)

In Eq. (11), < denotes the real part, fnðx=LÞ is a series of beam eigenfunctions crðxÞ given by

crðxÞ ¼ coshðlrxÞ � cos ðlrxÞ � sr sinhðlrxÞ � sin ðlrxÞð Þ,

r ¼ 1; 2; 3; . . . ; n; x ¼
x

L

	 

,

sr ¼
cosh lr � cos lr

sinh lr � sin lr

. ð12Þ

In the above equation, lr is the frequency parameter of the pipe without fluid flow, which is considered as a
beam, and it’s values [12] are:

l1 ¼ 3.926602 and l2 ¼ 7.068583 for the pinned–clamped case and l1 ¼ 4.730041 and l2 ¼ 7.853205 for the
clamped–clamped case.
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Substituting Eq. (11) in the equation of motion Eq. (2) gives

Ln ¼ EI
q4f
qx4
þ ðrAv2 � k2Þ

q2w
qx2
þ 2iorAv

qf
qx
þ ðk1 �Mo2Þf ¼ 0. (13)

Following the method given in Ref. [8], using Galerkin’s method and minimizing the mean square of the
residual Ln over the length of the pipe and using only the first two terms, we have the following equations in V.

For the pinned–clamped case:

ðC11C12 � C12C21ÞðV
2 � g2Þ

2
þ ðV2 � g2Þ

� ðl41 þ g1ÞC22 þ ðl
4
2 þ g1ÞC11� þ ½ðl

4
1 þ g1Þðl

4
2 þ g1Þ

� �
¼ 0. ð14Þ

For the clamped–clamped case:

ðC11C12ÞðV
2 � g2Þ

2
þ ðV2 � g2Þ ðl

4
1 þ g1ÞC22 þ ðl

4
2 þ g1ÞC11

� �
þ ðl41 þ g1Þðl

4
2 þ g1Þ

� �
¼ 0. (15)

In Eqs. (14) and (15), the constants C11, etc., are integral values, which are enumerated in Ref. [8]. Solving
the above equations for V, we obtain the critical flow velocities for the pinned–clamped and clamped–clamped
cases, respectively. In Doaré and de Langre [9], Eqs. (16) and (17) below have been used for obtaining the
critical flow velocity for the clamped–clamped boundary conditions, considering the Winkler foundation
model only

V cr ¼ 2p 1þ
3g1
ð2pÞ4

� �1=2

. (16)

Eq. (16) is used for g1p(84/11)p4, and Eq. (17) below,

V cr ¼ p
N4 þ 6N2 þ 1

N2 þ 1
þ

g1
p4ðN2 þ 1Þ

� �1=2

(17)

otherwise. Here, N is the smallest integer satisfying N4+2N3+3N2+2N+6Xg1/p
4.

3. Results and discussion

In the present work, for the pinned–pinned case, the first two terms of the equation resulting from using
Fourier series have been considered in obtaining the numerical results. For the clamped–clamped case, the
present work has used the assumed modes in the Galerkin method, again retaining the first two terms while
Doaré and de Langre [9], have used Eq. (8) for the pinned–pinned case and Eqs. (16) and (17) for the
clamped–clamped case. For both the boundary conditions, they have considered the Winkler foundation
model only. Since the mode shapes of the pipe will not appreciably change with fluid flow, the modes that are
assumed in the present work are for a pipe or beam without fluid flow.

3.1. Case 1: g2 ¼ 0, g1 varying

It is useful to compare the results of the present work for the condition where g2 ¼ 0, which represents the
Winkler foundation model, with those of Doaré and de Langre [9]. Tables 1 and 2 show the comparison. It is
seen that for all the boundary conditions, the variation in the results is not significant, especially for lower
values of the Winkler parameter, even though only the first two terms of the respective equations have been
considered.

In Figs. 2 and 3, here, a comparison is made with Fig. 3 of Doaré and de Langre [9], for the pinned–pinned
and the clamped–clamped boundary conditions, respectively, for the condition where the parameter g2 equals
zero. Eq. (8) has been used for pinned–pinned case and Eqs. (16) and (17) for the clamped–clamped case. As
shown in Fig. 2, for the value of the shear parameter g2 equal to zero, there is very good agreement with the
curve given in Fig. 3 of Doaré and de Langre [9] for the pinned–pinned case, up to a value of g1 ¼ 4500.
Higher values of g1 give higher values of critical velocity as compared to the work of Doaré and de Langre [9].
This deviation could be attributed to the use of only the first two terms of Eq. (5). As the value of g1 is
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Table 1

Values of the critical velocity parameter for various values of g1 with g2 ¼ 0.0 for the pinned–pinned case

g1 Doaré and de Langre [9] Present work % Variation

1.00E+00 3.1577 3.15768 0.0

1.00E+01 3.2989 3.29891 0.0

1.00E+02 4.4723 4.47233 0.0

2.00E+02 5.4894 5.48943 0.0

3.00E+02 6.3455 6.34555 0.0

4.00E+02 7.0435 7.04347 0.0

5.00E+02 7.2211 7.22105 0.0

6.00E+02 7.3944 7.39436 0.0

7.00E+02 7.5637 7.5637 0.0

8.00E+02 7.7293 7.72934 0.0

9.00E+02 7.8915 7.89149 0.0

1.00E+03 8.0504 8.05039 0.0

1.10E+03 8.2062 8.2062 0.0

1.30E+03 8.5093 8.50928 0.0

1.50E+03 8.8019 8.80192 0.0

1.70E+03 9.0851 9.08515 0.0

2.00E+03 9.4942 9.49416 0.0

2.50E+03 10.1392 10.13924 0.0

3.00E+03 10.7457 10.74566 0.0

3.50E+03 11.3196 11.31965 0.0

4.00E+03 11.5697 11.8659 2.6

4.50E+03 11.8105 12.38809 4.9

5.00E+03 12.0464 12.88914 7.0

5.50E+03 12.2778 13.37143 8.9

6.00E+03 12.505 13.83691 10.7

7.00E+03 12.9473 14.72381 13.7
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increased, more and more modes should be taken into consideration [13]. Fig. 3 shows the comparison for the
clamped–clamped case. In this case also, for higher values of g1 there is a deviation in the results obtained here,
due to the same reason.

3.2. Case 2: g1, g2 varying

In Tables 3–5, the effect of the shear parameter g2 on the critical velocity is clearly brought out.
The comparison is made for two values of the Winkler parameter g1 ¼ 10.0 and 1.0E4. It is seen that,
percentage-wise, compared to the value of g2 ¼ 0.0, there is a very high increase in the value of Vcr for
increasing values of g2. This increase is somewhat lower for the pinned–clamped and the clamped–clamped
conditions. In Figs. 4–6, the influence of g2 on the critical velocity parameter of the pipe for the three boundary
conditions is shown for various values of g1. There is not any perceptible change in the behaviour of the pipe
until the shear constant of the two-parameter foundation g2 takes a value of 10.0. The critical velocity
increases slightly for the value of g2 of 10.0. For a value of g2 of 100.0, there is a sharp jump in the value of the
critical velocity parameter and this trend continues for increasing values of g2, as shown in the figures. Another
observation from these plots is that, for lower values of g2, there is a sharp increase in the value of critical
velocity for the Winkler foundation constant g1 values greater than 10.0. The critical velocity does not seem to
be effected by the value of the Winkler constant g1 for higher values of g2.

3.3. Case 3: g1 ¼ 0.0, g2 varying and g2 ¼ 0.0, g1 varying

Finally, a comparison of the individual effects of each of the two foundation parameters on the critical
velocity parameter, when the other is equivalent to zero, is shown in Fig. 7, for the pinned–pinned case.
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Table 2

Values of the critical velocity parameter for various values of g1 with g2 ¼ 0.0 for the clamped–clamped case

g1 Doaré and de Langre [9] Present work % Variation

1.00E+00 6.2892 6.38505 1.5

1.00E+01 6.3434 6.44208 1.6

1.00E+02 6.8613 6.98684 1.8

2.00E+02 7.3944 7.54614 2.1

3.00E+02 7.8915 8.06676 2.2

4.00E+02 8.3591 8.55576 2.4

5.00E+02 8.8019 9.01828 2.5

6.00E+02 9.2235 9.45821 2.5

7.00E+02 9.6266 9.87856 2.6

8.00E+02 8.9447 9.9984 11.8

9.00E+02 9.2235 10.10641 9.6

1.00E+03 9.4942 10.21328 7.6

1.10E+03 9.7573 10.31904 5.8

1.30E+03 10.2634 10.52738 2.6

1.50E+03 10.5512 10.73167 1.7

1.70E+03 10.7415 10.93215 1.8

2.00E+03 11.0209 11.22615 1.9

2.50E+03 11.4713 11.69976 2.0

3.00E+03 11.9048 12.15492 2.1

3.50E+03 12.323 12.59364 2.2

4.00E+03 12.7274 13.01758 2.3

4.50E+03 13.1194 13.42815 2.4

5.00E+03 13.5001 13.82653 2.4

5.50E+03 13.7824 14.21375 3.1

6.00E+03 13.9649 14.5907 4.5

7.00E+03 14.3231 15.31678 6.9

Fig. 2. Comparison of results for g2 ¼ 0.0, with Fig. 3. of Doaré and de Langre [9] —J—, pinned–pinned pipe (present work);

– – –, pinned–pinned pipe [9].
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The top curve shows that there is a sharp increase in the critical velocity when there is a progressive increase in
the value of g2 beyond 100.0. This curve represents the case where g1 is near zero. The bottom curve shows the
variation of critical velocity with g1 when g2 is near zero. It can be observed that the influence of the shear
constant of the two-parameter foundation is more than that of the Winkler constant on the critical velocity.
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Table 3

Pinned–pinned case: Variation in Vcr for g1 ¼ 10.0 and 1.0E4

g2 Vcr-10.0 % Variation Vcr-1.0E4 % Variation

1.0E�06 3.2989 0.0 17.1108 0.0

1.0E�04 3.2989 0.0 17.1108 0.0

1.0E+01 4.4586 35.2 17.4006 1.7

1.0E+02 10.4823 217.8 19.8187 15.8

1.0E+03 31.7786 863.3 35.9552 110.1

5.0E+03 70.7875 2045.8 72.751 325.2

1.0E+04 100.054 2933.0 101.4533 492.9

Table 4

Pinned–clamped case: variation in Vcr for g1 ¼ 10.0 and 1.0E4

g2 Vcr�10.0 % Var. Vcr�1.0E4 % Var.

1.0E�06 4.5908 0.0 16.9195 0.0

1.0E�04 4.5908 0.0 16.9195 0.0

1.0E+01 5.5745 21.4 17.2125 1.7

1.0E+02 11.0034 139.7 19.6537 16.2

1.0E+03 31.9542 596.0 35.8646 112.0

5.0E+03 70.8595 1443.5 72.7067 329.7

1.0E+04 100.105 2080.5 101.4213 499.4

Table 5

Clamped–clamped case: variation in Vcr for g1 ¼ 10.0 and 1.0E4

g2 Vcr�10.0 % Var. Vcr�1.0E4 % Var.

1.0E�06 6.4420 0.0 17.3133 0.0

1.0E�04 6.4420 0.0 17.3133 0.0

1.0E+01 7.1763 11.4 17.5997 1.7

1.0E+02 11.895 84.7 19.9937 15.5

1.0E+03 32.2722 401.0 36.0520 108.2

5.0E+03 71.0035 1002.2 72.7993 320.5

1.0E+04 100.207 1455.5 101.487 486.2

Fig. 3. Comparison of results for g2 ¼ 0.0, with Fig. 3 of Doaré and de Langre [9] —n—, clamped–clamped pipe (present work); ———,

clamped–clamped pipe—Eq. (16); — � � –, clamped–clamped pipe—Eq. (17).
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Fig. 5. Pinned–clamped pipe: Variation of Vcr with g2 for various values of g1; —�—, g1 ¼ 0; —J—, g1 ¼ 1.0; —n—, g1 ¼ 100.0;

—&—, g1 ¼ 1000.0; ——, g1 ¼ 10000.0; — � � –, g1 ¼ 9.9E+4.

Fig. 6. Clamped–clamped pipe: Variation of Vcr with g2 for various values of g1; —�—, g1 ¼ 0; —J—, g1 ¼ 1.0; —n—, g1 ¼ 100.0;

—&—, g1 ¼ 1000.0; ——, g1 ¼ 10000.0; — � � –, g1 ¼ 9.9E+4.

Fig. 4. Pinned–pinned pipe: Variation of Vcr with g2 for various values of g1; —�—, g1 ¼ 0; —J—, g1 ¼ 1.0; —n—, g1 ¼ 100.0;

—&—, g1 ¼ 1000.0; ——, g1 ¼ 10000.0; — � � –, g1 ¼ 9.9E+4.

K.R. Chellapilla, H.S. Simha / Journal of Sound and Vibration 302 (2007) 387–397 395
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Fig. 7. Pinned–pinned pipe: Comparison of the effect of g1 and g2 on Vcr; —E—, g1 ¼ 0.0, —m—, g2 ¼ 0.0.
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4. Conclusions

The critical flow velocity of fluid-conveying pipes has been computed for three simple boundary
conditions—pinned–pinned, pinned–clamped and clamped–clamped, when such a pipe is resting on a two-
parameter elastic medium like the Pasternak foundation. Results have been presented for varying values of
both the foundation parameters. From the foregoing discussion, we can conclude the following:
(a)
 A comparison shows that the results from the present study are satisfactorily close to the results obtained
by earlier researchers Doaré and de Langre [9], for the case where g2, the shear foundation parameter,
equals zero, even though only two terms are considered for the computations. They have given results for
pinned–pinned and clamped–clamped boundary conditions. In the present work, a single expression for
the critical flow velocity is used to cover the entire range of foundation parameter values, while Doaré and
de Langre [9] have used two equations to compute the critical flow velocity parameter for different ranges
of the foundation parameter g1, for the clamped–clamped conditions.
(b)
 Results are also given for the pinned–clamped boundary condition. From the expressions for critical flow
velocity parameter, one can compute the values of the parameter for conditions like g2 ¼ 0.0 (only Winkler
foundation), g1 ¼ 0.0 (absence of Winkler foundation) and both g1 and g2 varying.
(c)
 New results are presented for a fluid-conveying pipe resting on a two-parameter foundation. The effect
of the second parameter on the critical flow velocity is investigated. The results show that the influence of
the shear parameter g2, cannot be ignored. The variation in the critical flow velocity is higher in the
presence of g2.
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